Steller sea lions (Eumetopias jubatus) have greater blood volumes, higher diving metabolic rates and a longer aerobic dive limit when nutritionally stressed.
نویسندگان
چکیده
Marine mammal foraging behaviour inherently depends on diving ability. Declining populations of Steller sea lions may be facing nutritional stress that could affect their diving ability through changes in body composition or metabolism. Our objective was to determine whether nutritional stress (restricted food intake resulting in a 10% decrease in body mass) altered the calculated aerobic dive limit (cADL) of four captive sea lions diving in the open ocean, and how this related to changes in observed dive behaviour. We measured diving metabolic rate (DMR), blood O2 stores, body composition and dive behaviour prior to and while under nutritional restriction. We found that nutritionally stressed sea lions increased the duration of their single long dives, and the proportion of time they spent at the surface during a cycle of four dives. Nutritionally stressed sea lions lost both lipid and lean mass, resulting in potentially lower muscle O2 stores. However, total body O2 stores increased due to rises in blood O2 stores associated with having higher blood volumes. Nutritionally stressed sea lions also had higher mass-specific metabolic rates. The greater rise in O2 stores relative to the increase in mass-specific DMR resulted in the sea lions having a longer cADL when nutritionally stressed. We conclude that there was no negative effect of nutritional stress on the diving ability of sea lions. However, nutritional stress did lower foraging efficiency and require more foraging time to meet energy requirements due to increases in diving metabolic rates and surface recovery times.
منابع مشابه
Dive behaviour impacts the ability of heart rate to predict oxygen consumption in Steller sea lions (Eumetopias jubatus) foraging at depth.
The predictive relationship between heart rate (f(H)) and oxygen consumption (VO2) has been derived for several species of marine mammals swimming horizontally or diving in tanks to shallow depths. However, it is unclear how dive activity affects the f(H):VO2 relationship and whether the existing equations apply to animals diving to deeper depths. We investigated these questions by simultaneous...
متن کاملActivity and diving metabolism correlate in Steller sea lion Eumetopias jubatus
Three Steller sea lions Eumetopias jubatus were trained to participate in free-swimming, open-ocean experiments designed to determine if activity can be used to estimate the energetic cost of finding prey at depth. Sea lions were trained to dive to fixed depths of 10 to 50 m, and to re-surface inside a floating dome to measure energy expenditure via gas exchange. A 3-axis accelerometer was atta...
متن کاملMetabolic costs of foraging and the management of O2 and CO2 stores in Steller sea lions.
The metabolic costs of foraging and the management of O2 and CO2 stores during breath-hold diving was investigated in three female Steller sea lions (Eumetopias jubatus) trained to dive between 10 and 50 m (N=1142 dives). Each trial consisted of two to eight dives separated by surface intervals that were determined by the sea lion (spontaneous trials) or by the researcher (conditioned trials). ...
متن کاملDrag, but not buoyancy, affects swim speed in captive Steller sea lions
Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed t...
متن کاملPostnatal ontogeny of erythropoietin and hematology in free-ranging Steller sea lions (Eumetopias jubatus).
The hormone erythropoietin (EPO) is responsible for the increased production of red blood cells (RBC) in response to tissue hypoxia. While the role of EPO in hematological development has been established in humans and terrestrial mammals, this relationship has never been examined in marine mammals that rely heavily on stored oxygen to maintain aerobic metabolism while diving. Since blood is th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 217 Pt 5 شماره
صفحات -
تاریخ انتشار 2014